If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50x^2-100x=0
a = 50; b = -100; c = 0;
Δ = b2-4ac
Δ = -1002-4·50·0
Δ = 10000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{10000}=100$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-100)-100}{2*50}=\frac{0}{100} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-100)+100}{2*50}=\frac{200}{100} =2 $
| –9n=–10n+7 | | 10d-4(7d+10)=-10d | | 3n−5=−8(6+5n)* | | 1x1=12x12 | | -10r=10r+6(-3r+10) | | -8=3(v-7)-8 | | 2n×4=−16 | | 5x+5=6x-9 | | (2x+29)=(5x-4) | | 4+9.3x=-4x-4.3 | | 18+r=56 | | 2x=5x^2-1 | | 16x=–4 | | c-7.6=9.7 | | 8-24x=16 | | 16=–4x | | 4+(2x-3)+4=8x-8 | | 12=3x | | 200=x+1.25(x) | | 10^(x+12)=45 | | 12/3+a/2=1/6 | | -5+10x=-20 | | m+12/3=13/6 | | 17x−9(x+4)=2(4x−18) | | 13=d÷4 | | (x+x)+8(x+x)=144 | | x–2.3x+5=4.9 | | E^2x=1638 | | E2x=1638 | | –8.38x+10.71=131.382+5.98x | | -5/8+v/4=3/8 | | 53x=24(x+2) |